Fully Band-Resolved Scattering Rate in MgB$_2$ Revealed by the Nonlinear Hall Effect and Magnetoresistance Measurements

Huan Yang, Yi Liu, Chenggang Zhuang, Junren Shi, Yuguai Yao, Sandro Massidda, Marco Monni, Ying Jia, Xiaoxing Xi, Qi Li, Zi-Kui Liu, Qingrong Feng, and Hai-Hu Wen

1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, P. R. China
2Department of Physics, Peking University, Beijing 100871, P. R. China
3Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
4Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
5SLACS-INFM and Dipartimento di Fisica, Università di Cagliari, I-09042 Monserrato (Ca), Italy

(Rceived 21 February 2008; published 7 August 2008)

We have measured the normal state temperature dependence of the Hall effect and magnetoresistance in epitaxial MgB$_2$ thin films with variable disorders characterized by the residual resistance ratio RRR ranging from 4.0 to 33.3. A strong nonlinearity of the Hall effect and magnetoresistance have been found in clean samples, and they decrease gradually with the increase of disorders or temperature. By fitting the data to the theoretical model based on the Boltzmann equation and ab initio calculations for a four-band system, for the first time, we derived the scattering rates of these four bands at different temperatures and magnitudes of disorder. Our method provides a unique way to derive these important parameters in multiband systems.

DOI: 10.1103/PhysRevLett.101.067001

The multiband character of MgB$_2$ [1] dominates its properties in both the superconducting [2–6] and normal states [7–10]. In MgB$_2$, there are two hololike quasi-two-dimensional σ bands (bonding σ_1 and antibonding σ_2), an “electronlike” antibonding (π_1), and a “holelike” bonding (π_2) three-dimensional π band [11,12]. The electron scattering rates in each band and between different bands are the most critical parameters dictating all aspects of the properties of MgB$_2$ [8–10,13]. The temperature dependence of the electron scattering rates arises from electron-phonon (e-ph) coupling, and the strong e-ph coupling between the E_{2g} phonon mode and the σ bands are responsible for the high T_c in MgB$_2$ [14]. Consequently, measuring the intraband and interband scattering rates in MgB$_2$, with a goal to further manipulate them in order to reveal new physics and achieve desirable properties, has been central to many research studies. The properties used to extract the band-resolved scattering rates include electrical resistivity [10], magnetoresistance (MR) [8,9,15,16], far-infrared spectroscopy [17], and upper critical field H_{c2} [13]. For example, Monni et al. were able to derive the temperature-dependent relaxation times, τ_σ and τ_{π}, for the generalized σ and π bands, respectively, from the MR measurement and ab initio calculations [15]. However, although the two σ bands (or the two π bands) have similar properties, they are distinct from each other. For example, the two π bands have different types of carriers. Without the knowledge of scattering rates in all the four different bands, the understanding of the multiband nature of MgB$_2$ is incomplete. To our best knowledge, information from MR alone is not sufficient to derive the scattering rates in four different bands. In this Letter, we report results of strong nonlinear Hall effect (NLHE) and large MR in pure epitaxial MgB$_2$ films. This made it possible to derive the scattering rates and their dependencies on temperature and disorder in each of the four bands, a significant advancement of the knowledge concerning the multiband character of MgB$_2$.

The MgB$_2$ films used in this work were grown by the hybrid physical-chemical vapor deposition (HPCVD) technique [18] on (0001) 6H-SiC substrates. They were epitaxial with a c-axis orientation, and the thickness was between 100 and 200 nm. Films with different magnitudes of disorder, thus different residual resistivity, were grown at slightly different temperatures, pressures, and growth rates. Nevertheless, all the films had similar T_c around 40 K and narrow x-ray diffraction rocking curves. The longitudinal and the transverse resistivity were measured with sweeping magnetic field at a fixed temperature or sweeping temperature at a fixed field. All the measurements were performed with magnetic field applied perpendicular to the ab plane of the film. For the seven films investigated here, the residual resistance ratios $RRR = \rho(300 \text{ K})/\rho(41 \text{ K})$ are 33.3, 24.5, 20.9, 14.4, 6.88, 6.4, and 4.0, and we mark them as $RRR_{33.3}$, $RRR_{24.5}$, $RRR_{20.9}$, $RRR_{14.4}$, $RRR_{6.88}$, $RRR_{6.4}$, and $RRR_{4.0}$, respectively. Their corresponding residual resistivities ρ_n are 0.293, 0.347, 0.411, 0.740, 1.32, 2.55, and 4.66 $\mu\Omega \text{ cm}$, respectively.

In Fig. 1, we show the field dependence of $\Delta \rho_{xx}(B)/\rho_{xx}(0)$ and $R_{HL}(B)/R_{HL}(0)$ for all the seven samples at $T = 41 \text{ K}$. Here, $R_{HL}(B) = \rho_{xy}/B$ is the Hall coefficient at the magnetic field B; ρ_{xx} and ρ_{xy} are the longitudinal and transverse resistivity, and $\Delta \rho_{xx}(B) = \rho_{xx}(B) - \rho_{xx}(0)$. The dashed lines show the cases for zero MR and linear...
Hall effect, as one can expect in single band metals with the spherical or the columned Fermi surface. MR and NLHE are observed in all the samples, but the MR is larger and the NLHE is stronger in cleaner samples. In sample $RRR^{33.3}$ at 9 T and 41 K, a large MR of more than 100% is observed, and the Hall coefficient decreases to about half of the zero-field value. The magnitude of MR is similar to an earlier report in a clean MgB$_2$ film due to the multiband effect [9]. For the dirty samples with low RRR, because the interband scattering is very strong, the multiband natures, such as the MR and the NLHE, are weak, and the Kohler’s rule is satisfied [19], which is not the case in clean MgB$_2$ films [9]. The insets in Figs. 1(a) and 1(b) present the temperature dependence of the normalized MR and NLHE at 9 T of the films $RRR^{33.3}$, $RRR^{20.9}$, and $RRR^{9.9}$. Both MR and the NLHE decrease rapidly with increasing T. In a single band metal with anisotropic Fermi surface, R_H should be very weakly T dependent. However, as shown in the inset of Fig. 1(b), the Hall coefficient has a strong T dependence, especially for the clean samples. It should be noted that the value of R_H is about an order of magnitude larger than those reported by Eltsov et al. in single crystals [20], which is not necessarily an indication of a smaller density of charge carriers in this clean film. As discussed below, due to the existence of multiple bands, the Hall coefficient can no longer be written simply as $1/ne$ as in single band materials.

The large MR and NLHE originate directly from the multiband character of MgB$_2$, from which we can extract information on the electron scattering rates in the different bands. To do this, we first need to determine the contribution of each band to the (Hall) conductivity at the given electron scattering rate. The complex band structure of MgB$_2$ renders the simple formulae presented in textbooks invalid. We thus employ the semiclasical Boltzmann theory with the relaxation time approximation [21]. In this approximation, the electron state is assumed to have a finite lifetime, which is induced by all possible electron scattering processes, including the intraband and interband scatterings. The conductivity tensor σ for the nth band reads:

$$\sigma^{(n)} = e^2 \int \frac{d\mathbf{k}}{4\pi^3} \tau_n \mathbf{v}_n(\mathbf{k}) \mathbf{v}_n(\mathbf{k})^\dagger \left(\frac{\partial f}{\partial E} \right)_{E=E_n(\mathbf{k})},$$

where $\mathbf{v}_n(\mathbf{k}) = \partial E_n/\partial \hbar \mathbf{k}$ is the group velocity at the wave vector \mathbf{k}. Under a magnetic field, the wave vector of electron evolves by $\hbar \mathbf{k}_n = -(e/\mathbf{c}) \mathbf{v}_n(\mathbf{k}) \times \mathbf{B}$; and $\mathbf{v}_n(\mathbf{k}) = \int_{0}^{r_{\text{F}}} dt e^{i\mathbf{r}_{\mathbf{k}}(\mathbf{k})/\tau_n}$, is a weighted average of the velocity over the past history of the electron orbit passing through \mathbf{k}; f is the Fermi distribution function. Here, we have assumed that τ_n is independent on the wave vector \mathbf{k}. The band structure necessary for the evaluation is determined from the $ab\text{ initio}$ electronic structure calculations. Here, we employed the ultrasoft pseudopotential plane-wave method [22] with generalized-gradient approximation [23] for the exchange and correlation potential. For the case of $B = 0$, we obtain the electronic density of state at the Fermi level and plasma frequency ω_{sz}, and ω_{cz}, for each band in very good agreement with those given by Liu et al. [10]. For $B \neq 0$, \mathbf{v}_n is obtained by self-adaptive Runge-Kutta integration. The calculated Hall conductivity $\sigma^{(n)}_{sz}/\tau_n$, as a function of $B\tau_n$, is shown in Fig. 2. The calculation results for both σ_{sz} and σ_{xy} can be well interpolated by the Padé series:

$$\sigma^{(n)}_{sz}/\tau_n = \frac{a_1^{(n)} + a_2^{(n)}(B\tau_n)^2}{1 + b_1^{(n)}(B\tau_n)^2 + b_2^{(n)}(B\tau_n)^4},$$

$$\sigma^{(n)}_{xy}/\tau_n = \frac{c_1^{(n)}(B\tau_n)^3 + c_2^{(n)}(B\tau_n)^5}{1 + d_1^{(n)}(B\tau_n)^2 + d_2^{(n)}(B\tau_n)^4},$$

with the coefficients shown in Table I. The total conductivity is the summation of the four bands. The $ab\text{ initio}$ calculation reveals some unexpected behaviors: (i) The “electronlike” π_1 band behaves as a hole band when the magnetic field is normal to the ab plane; (ii) The “holelike” π_2 band has a sign change from positive to negative with increasing $B\tau$. The latter can be understood as a result of the complex structure of the π_2 Fermi surface, which is composed of electronlike belly and holelike hills, as shown in the left inset of Fig. 2. At small $B\tau$, the conduction is dominated by the small orbits around the hills, showing the holelike behavior. The opposite happens when $B\tau$ is large. These unusual behaviors clearly indicate the inapplicable-
negative while the hill region is positive. demonstrates that the contribution from the belly region is
bits between \(0.0255, 0.0026\),
\[
\int dk_xdk_\parallel dk_zn_\parallel(k)\frac{\partial f}{\partial k_z}e=\epsilon_0(k)\text{contributed by orbits between }-k_z\text{ to }k_z\text{ of }\pi_2\text{ band as a function of }k_z. It demonstrates that the contribution from the belly region is negative while the hill region is positive.

urity of the simple formula in describing the magnetoresistance of MgB\(_2\) system [8].

By using the least-squares fit to multifunctions [24], we then fit the experimental data \(\sigma_{xx}(B)\) and \(\sigma_{xy}(B)\) (derived from the resistivity by \(\sigma_{xx}=\rho_{xx}/(\rho_{xx}^2+\rho_{xy}^2)\) and \(\sigma_{xy}=\rho_{xy}/(\rho_{xx}^2+\rho_{xy}^2)\)) at each temperature to Eq. (2) by adjusting the four electron scattering times. The maximum range of \(B\tau\) in the fitting are plotted by the thick solid lines as shown in Fig. 2. Figure 3 shows the temperature dependence of four scattering times for samples RRR33.3 and RRR20.9. Note that the fitting becomes less reliable at high temperature (\(T>100\) K), as the nonlinearity of the magneto-resistivity becomes weaker.

To extend our fitting to higher temperature, we adopt a global fitting approach: Instead of fitting an individual curve at a time, we simultaneously fit all the curves for

all temperatures. To do that, we assume \(1/\tau^{(n)}=1/\tau^{(n)}_{\text{imp}}+1/\tau^{(n)}_{e\text{-ph}}(T)\), where \(\tau^{(n)}_{\text{imp}}\) is the scattering time from impurities and is \(T\)-independent, and \(\tau^{(n)}_{e\text{-ph}}(T)\) is due to the \(e\text{-ph}\) coupling, and can be modeled as \(1/\tau^{(n)}_{e\text{-ph}}(T)=\alpha_n T^{\beta_n}\). The results are shown by the solid lines in Fig. 3. We find that both approaches coincide well.

We can separate the \(T\)-independent impurity contribution with the \(T\)-dependent \(e\text{-ph}\) contribution. In Fig. 4, we plot the temperature dependence of \(1/\tau_{e\text{-ph}}\) of three clean samples RRR33.3, RRR24.9, and RRR20.9. The values from all the three samples are close to each other, indicating the \(e\text{-ph}\) coupling are not strongly affected by the impurities. The exponents \(\beta_n\) for the temperature dependence of \(1/\tau_{e\text{-ph}}\) are found to be 3.80 (\(\sigma_1\)), 4.15 (\(\sigma_2\)), 4.22

<table>
<thead>
<tr>
<th>(\sigma_{xx})</th>
<th>(a_1(10^{-20}))</th>
<th>(a_2(10^{24}))</th>
<th>(b_1(10^{24}))</th>
<th>(b_2(10^{48}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_1)</td>
<td>1.66990</td>
<td>10.94632</td>
<td>6.76549</td>
<td>2.29927</td>
</tr>
<tr>
<td>(\sigma_2)</td>
<td>1.69337</td>
<td>0.29735</td>
<td>0.27378</td>
<td>0.01295</td>
</tr>
<tr>
<td>(\pi_1)</td>
<td>4.95528</td>
<td>2.20045</td>
<td>0.51383</td>
<td>0.00998</td>
</tr>
<tr>
<td>(\pi_2)</td>
<td>1.88788</td>
<td>0.32211</td>
<td>0.26752</td>
<td>0.00269</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\sigma_{xy})</th>
<th>(c_1(10^{-8}))</th>
<th>(c_2(10^{16}))</th>
<th>(d_1(10^{24}))</th>
<th>(d_2(10^{48}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_1)</td>
<td>0.92146</td>
<td>2.59031</td>
<td>2.90378</td>
<td>0.93769</td>
</tr>
<tr>
<td>(\sigma_2)</td>
<td>0.28948</td>
<td>0.41532</td>
<td>1.08441</td>
<td>0.07650</td>
</tr>
<tr>
<td>(\pi_1)</td>
<td>0.45035</td>
<td>1.46465</td>
<td>2.26895</td>
<td>0.04918</td>
</tr>
<tr>
<td>(\pi_2)</td>
<td>0.12735</td>
<td>-0.01163</td>
<td>0.20542</td>
<td>0.00127</td>
</tr>
</tbody>
</table>

FIG. 2 (color online). \(B\tau\) dependence of \(\sigma_{xy}/\tau\) for the four bands. The left inset shows the Fermi surface of \(\pi_2\) band, the electronlike orbit ("E") around the belly and the holelike orbit ("H") around the hills are indicated as the arc lines. The right inset shows the partial Hall conductivity ("') around the hills are indicated as the arc lines. The right inset shows the partial Hall conductivity ("') around the hills are indicated as the arc lines.
The phonon is much more effective in scattering electrons in the Fermi surface than others, which we have calculated the scattering times of the two ph bands. In agreement with the theoretical calculation [15], surprisingly, the σ-ph coupling in the π_2 band is also very strong. The difference between the σ-ph coupling in the two π bands can be understood by our ab initio calculation: in the fitting range shown in Fig. 2, the magnetoresistance and nonlinear Hall effect in clean MgB$_2$ films, from which we have calculated the scattering times of each one of the four bands, in the aid of theory based on the Boltzmann equation and ab initio calculations. The π_2 band seems to be similar as the two σ bands, i.e., has a large scattering time in pure samples at low temperature, and also has a strong σ-ph coupling. And the electron-phonon scattering is much weaker in the π_1 band than other three bands, making the π_1 band the least scattered at high temperatures. This may be caused by the different structure of the Fermi surface of this band. Disorder modifies the multiband electron scattering much in the same way as the phonon, reducing the scattering times of the two σ bands and π_2 band to be comparable to the π_1 band. This detailed knowledge on the band-resolved scattering rates allow to have deeper insight on the properties of MgB$_2$ than using the two-band approximation.

We thank A. Gurevich, I.I. Mazin, M. Putti, C. Ferdeghini for critical remarks and helpful discussions. This work is supported by the Natural Science Foundation of China, the MOST Project (Nos. 2006CB601000, 2006CB921802, 2006CB921300, 2007CB925000), the Knowledge Innovation Project of Chinese Academy of Sciences (ITSNEM), the work at Penn State is supported by NSF under Grant Nos. DMR-0306746 (X. X. X.), DMR-0405502 (Q. L.), and DMR-0514592 (Z. K. L. and X. X. X.), and by ONR under Grant No. N00014-00-1-0294 (X. X. X.). Work in Italy is supported by MIUR, PRIN2006021741, and PON-CyberSar (COSMOLAB).

*Corresponding authors: experiment and data analysis: hhwen@aphy.iphy.ac.cn (H. H. Wen); theory: jrshi@aphy.iphy.ac.cn (J. R. Shi).

[25] For the simple metals, the low temperature e-ph transport scattering rate follows the so-called “Bloch T3 law.” However, for systems with complex Fermi surfaces or small Fermi pockets, the backscattering of electron may not require large momentum transfer, and the transport scattering rate will be proportional to T^3. In general, the exponent should be in the range of 3–5. See Ref. [21].